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Abstract Analysis of the Data
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identifies network performance as the dominant source of runtime variability. These findings Number of slow GPUs Number of distinct dragonfly groups Number of concurrent nodes of top users e~

provide crucial insights that can inform the development of future mitigation strategies.

o Left: Slow GPU = # of GPUs in job allocation which fall in slowest 1% of system's GPUs. Our analysis reveals the quantity of “slow” GPUs

What IS Pe r'fo rmance Val”lablllt)” has no impact on performance. Middle: On both systems, job allocations across more Dragonfly groups does not degrade app performance,
despite incurring more network hops. Right: Top Users: Users whose allocated number of nodes correlates with our application's
¢ Performance Variability: fluctuations in application runtime across repeated performance variation and who concurrently request more than 32 nodes. On both systems, when concurrent node allocation by Top Users ® Feature importances based on XGBoost models. Left: On Perimutter,
executions under seemingly identical inputs, environments, and system conditions crosses a threshold, app runtime consistently increases. most important feature is hni_rx_paused_O_mean (num CYCIeS where recv Path is

aused, suggesting network pushing data quicker than NIC can read) Right: On
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® Prior studies focused on CPU-based systems, leaving the impact of new ML based Anal)’SiS and Performance Prediction requests matched on software endpoints

communication patterns on variability in GPU-based supercomputers unexplored. \\————————————————
Conclusions

e Methodology:We train an XGBoost model to predict runtime.VWe use 90% of our runs for training data, reserving 10% of testing.
o0 Summary of performance dataset features [name (feature count per run)]: Application Name (1), Placement (1), GEMM (3), MPI Allreduce

Relative performance of different applications (Perlmutter)
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® We collect the following features to analyze performance variability: mpiP for 9 T o0l 669% : y e “Top User” jobs should run on isolated nodes to prevent their communication
profiling HPC apps, the PyTorch profiler for Al workloads, SLURM’s sacct logs, B gs o o ' . L- patterns from impacting network performance for others.
Cassini NIC hardware counters, and performance data from GEMM and 4001 @4 0- : , :
All-Reduce microbenchmarks = e PS'\G T oMae e Future designs need not over-engineer the topology for increased network hops.
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9% 150 200 250 300 350 400 20000 400 600 800 1000 1200 1400 1600 1800 “"‘“ O"*‘"“> il The dragonfly topology is very robust, essentially neutralizing the incurred penalties
e Platforms used: Actual Runtime (S) Actual Runtime (S) Perlmutter Frontier from nodes allocations being Spread out.
NERSC Perlmutter OLCF Frontier e Left & middle: Actual vs predicted runtime using placement, GEMM, Allreduce, and NIC counters features (Perlmutter & Frontier). ® The application of ML-models (like XGBoost) for system-wide monitoring can
GPU model NVIDIA A100 GPU AMD MI250X GPU e Right: When NIC counter features are included in input, MAPE decreases significantly, especially for apps with more variation (e.g. predict runtime variability with high accuracy using features like NIC and network
. DeepCAM on Frontier).This highlights the importance of NIC counters for explaining variability counters. System administrators can use these predictions to detect early signs of
CPU model AMD EPYC 7763 Milan CPU ' AMD EPYC 7713 Trento CPU congestion and allow users to delay or cancel their workloads.
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