
Acknowledgements References

● We measure variability for two HPC apps (AMG and MILC) and two AI apps
(DeepCAM and nanoGPT)

● We collect the following features to analyze performance variability: mpiP for
profiling HPC apps, the PyTorch profiler for AI workloads, SLURM’s sacct logs,
Cassini NIC hardware counters, and performance data from GEMM and
All-Reduce microbenchmarks.

● Platforms used:

[1] J. Kim,W. J. Dally, S. Scott, and D. Abts. 2008. Technology-Driven, Highly-Scalable Dragonfly Topology. In 2008 International Symposium on Computer Architecture.
[2] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (San Francisco, California, USA) (KDD’16).
[3] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, and Katherine E. Isaacs. 2013. There goes the neighborhood: performance degradation due to nearby jobs. In
Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’13).
[4] Daniel Nichols, Alexander Movsesyan, Jae-Seung Yeom, Daniel Milroy, Tapasya Patki, Abhik Sarkar, and Abhinav Bhatele. 2024. Predicting Cross-Architecture Performance of
Parallel Programs. In Proceedings of the IEEE International Parallel & Distributed Processing Symposium (IPDPS ’24).

● Performance Variability: fluctuations in application runtime across repeated
executions under seemingly identical inputs, environments, and system conditions

● Sources of variability: HW defects, network contention, job placement, OS jitter
● Prior studies focused on CPU-based systems, leaving the impact of new

communication patterns on variability in GPU-based supercomputers unexplored.

● “Top User” jobs should run on isolated nodes to prevent their communication
patterns from impacting network performance for others.

● Future designs need not over-engineer the topology for increased network hops.
The dragonfly topology is very robust, essentially neutralizing the incurred penalties
from nodes allocations being spread out.

● The application of ML-models (like XGBoost) for system-wide monitoring can
predict runtime variability with high accuracy using features like NIC and network
counters. System administrators can use these predictions to detect early signs of
congestion and allow users to delay or cancel their workloads.

● Network conditions - not GPU variability or job placement - are the primary drivers
of runtime variability in large-scale GPU workloads.

● A small subset of users running communication-heavy jobs account for most of the
observed performance degradation.

● Our ML model accurately predicts runtime variability, even with limited training data
per application.

This material is based upon work supported in part by the National Science Foundation Graduate Research Fellowship under Grant No. 1650114. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This
research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National
Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award m2404 for 2023.

● Methodology: We train an XGBoost model to predict runtime. We use 90% of our runs for training data, reserving 10% of testing.
○ Summary of performance dataset features [name (feature count per run)]: Application Name (1), Placement (1), GEMM (3), MPI Allreduce

(11), NCCL Allreduce (8), NIC Counters (29*3)
● Evaluation: We use Mean Absolute Percentage Error (MAPE)

Modern HPC facilities increasingly rely on GPU-accelerated clusters to drive both scientific
computing and AI workloads. Performance variability is a critical issue in these systems,
undermining efficiency and reproducibility. While prior studies have extensively analyzed
variability in CPU-centric supercomputers, large-scale investigations on GPU clusters are
lacking. To address this gap, we set up a longitudinal experiment on Perlmutter and Frontier.
We benchmark representative HPC and AI applications and collect detailed performance
data to assess the impact of compute variability, allocated node topology, and network
conditions on overall runtime. We also use a ML based approach to identify potential
correlations between these factors and to forecast the execution time. Our analysis
identifies network performance as the dominant source of runtime variability. These findings
provide crucial insights that can inform the development of future mitigation strategies.

NERSC Perlmutter OLCF Frontier

GPU model NVIDIA A100 GPU AMD MI250X GPU

CPU model AMD EPYC 7763 Milan CPU AMD EPYC 7713 Trento CPU

Interconnect HPE Slingshot-11 HPE Slingshot-11

GPUs/GCDs per node 4 8

Unmasking Performance Variability in GPU Codes on Supercomputers

Cunyang Wei, Keshav Pradeep, Abhinav Bhatele
Department of Computer Science, University of Maryland

Abstract

What is Performance Variability?

Methodology for Measuring Variability

Analysis of the Data

Conclusions

ML based Analysis and Performance Prediction

● Left: Slow GPU = # of GPUs in job allocation which fall in slowest 1% of system's GPUs. Our analysis reveals the quantity of “slow” GPUs
has no impact on performance. Middle: On both systems, job allocations across more Dragonfly groups does not degrade app performance,
despite incurring more network hops. Right: Top Users: Users whose allocated number of nodes correlates with our application's
performance variation and who concurrently request more than 32 nodes. On both systems, when concurrent node allocation by Top Users
crosses a threshold, app runtime consistently increases.

● Left & middle: Actual vs predicted runtime using placement, GEMM, Allreduce, and NIC counters features (Perlmutter & Frontier).
● Right: When NIC counter features are included in input, MAPE decreases significantly, especially for apps with more variation (e.g.

DeepCAM on Frontier). This highlights the importance of NIC counters for explaining variability

Recommendations for Future Efforts

● Feature importances based on XGBoost models. Left: On Perlmutter,
most important feature is hni_rx_paused_0_mean (num cycles where recv path is
paused, suggesting network pushing data quicker than NIC can read) Right: On
Frontier, most important feature is lpe_net_match_request_0_mean (num
requests matched on software endpoints

