Unmasking Performance Variability in GPU Codes on Production
Supercomputers

Cunyang Wei, Rishi Keshav Pradeep, Abhinav Bhatele
Department of Computer Science, University of Maryland
College Park, Maryland, USA
{cunyang,keshprad}@umd.edu,bhatele@cs.umd.edu

Abstract

Modern HPC facilities increasingly rely on GPU-accelerated clus-
ters to drive both scientific computing and AI workloads. Perfor-
mance variability is a critical issue in these systems, undermining
efficiency and reproducibility. While prior studies have extensively
analyzed variability in CPU-centric supercomputers, large-scale
investigations on GPU clusters are lacking. To address this gap,
we set up a longitudinal experiment on Perlmutter and Frontier.
We benchmark representative HPC and Al applications and collect
detailed performance data to assess the impact of compute vari-
ability, allocated node topology, and network conditions on overall
runtime. We also use a ML based approach to identify potential
correlations between these factors and to forecast the execution
time. Our analysis identifies network performance as the dominant
source of runtime variability. These findings provide crucial insights
that can inform the development of future mitigation strategies.

1 Methodology

We conducted extensive experiments on Perlmutter at NERSC and
Frontier at OLCF. We repeatedly ran a suite of representative work-
loads to probe the systems’ performance under real-world condi-
tions. These workloads include both traditional HPC applications
(AMG2023 [4, 7], MILC[1]) and AI training tasks (nanoGPT [11],
DeepCAM[6]). By covering both MPI and NCCL/RCCL [10, 12], our
experiments stress the network in ways typical of traditional HPC
applications and modern Al workloads, respectively. We observed
substantial performance variability across runs. On Perlmutter we
observed up to 1.4X variability for nanoGPT, and on Frontier, Deep-
CAM exhibited up to 3.2X variability.

For each experimental run, we captured comprehensive perfor-
mance metrics including application runtime, network counters
[3], MPI profiles via mpiP [13] for HPC applications and using the
PyTorch Profiler [8] to profile Al applications. We also recorded
job scheduler logs to track node allocations, placement topology,
and background system load.

2 Analysis of the Data
2.1 Impact of Slow GPUs on Variability

In large-scale parallel workloads, collective communications occur
frequently, and overall performance often hinges on the slowest
GPU. We examined the correlation between application runtime
and the number of GPUs within the job’s allocation that fall into
the system-wide slowest 1% (based on GEMM performance). As
illustrated in Figure 1 (left), our analysis reveals no discernible rela-
tionship between the quantity of allocated slow GPUs and runtime.
We observed the same lack of relationship when extending this

Slow GPU count vs. MILC perf. (Frontier) Dragonfly groups vs. DeepCAM perf.

1.8 N
817 o [a] Y40 (Frontier)
516 8 o g
£ o ogoB g
&'s o--Bo o E30ly J
o 14 o k3 o )
o Og @ o
g% BEBB of B0l @, 00 *4
212 2 0 0 000 ¢
] _ ]
21l oagoe 2.8 a Raftbo 0000 o ol
1.0 =] o x 1.0 ¢
0 2 4 6 8 10 12 14 6 0 8 16 24 32 40 48 56 64
Number of slow GPUs Number of distinct dragonfly groups

Figure 1: Left: Impact of the number of slow GPUs in our job’s
allocation on MILC runtime, Right: Impact of the number of
dragonfly groups on DeepCAM runtime

investigation to include the slowest 10% and 30% of GPUs. This
finding suggests that performance variability likely stems from
other factors, such as network congestion rather than from the
presence of individually slower computing elements.

2.2 Allocation Spread across Dragonfly Groups

We then investigated whether allocating a larger number of drag-
onfly [5] groups increases network hops, thereby impacting overall
network performance. As shown in Figure 1 (right), our experi-
ments show that the runtime of DeepCAM does not correlate with
the number of dragonfly groups. Although increasing the number
of dragonfly groups inherently introduces longer network paths
and potentially higher hop counts, the performance implications
are effectively neutralized in practice, demonstrating the robustness
of the underlying network hardware and software layers.

2.3 Impact of Concurrently Running Jobs

Total concurrent nodes vs. AMG2023 perf.
(Perlmutter)

Num of concurrent nodes for top users vs.
AMG2023 perf. (Perimutter)

ol
£ 130 o ° 2130 2 °
£ 125 S £12s o
£ 120 £ 120
5
S s s
o ® o oo®
2110 2 110
8105 5105
2000 00 og cuatels | 2 || Bwo

22502500 2750 3000 3250 3500 3750 4000 4250
Number of total allocated concurrent nodes

0 250 500 750 1000 1250 1500 1750 2000
Number of concurrent nodes of top users

Figure 2: Left: Impact of total number of nodes allocated
to relevant jobs on performance variability. Right: Impact
of number of nodes allocated to top users on performance
variability

Here, we investigate whether the total allocated nodes from all
relevant jobs correlate with the runtime of our application. Figure
2 (left) shows that aggregate node allocation alone fails to explain



performance variations, likely due to noise introduced by low com-
munication demand tasks. To address this, we perform a refined
analysis identifying Top Users whose allocated number of nodes
correlates with our application’s runtime and who concurrently
request more than 32 nodes. Our analysis reveals that, as shown
in Figure 2 (right), when the concurrent node allocation by these
Top Users exceeds a certain threshold, our application’s runtime
consistently increases. For example, on Perlmutter, performance
degradation of at least 7% for AMG2023 occurs when Top Users
collectively occupy over 300 nodes.

3 ML-based Performance Forecasting

We used machine learning methods to investigate key factors con-
tributing to performance variability. We collected logs from multiple
runs and extracted metrics including application name, dragonfly
group placement, GEMM performance, MPI/NCCL Allreduce per-
formance, and NIC counters [3]. We used XGBoost [2, 9] regression
as our primary method, with 10% of data kept for testing and 90%
for training.

Feature Importances: On Perlmutter, hni_rx_paused_0_mean
and allreduce_2GB stand out. The first metric tracks cycles where
traffic class 0 remains paused on the receive path, suggesting the
network pushes data more rapidly than the endpoint NIC can con-
sume. Together with Allreduce performance as a proxy for overall
network performance, these features show that NIC congestion and
system network congestion are strong predictors of performance
variation.

On Frontier, 1pe_net_match_request_0_mean, atu_cache_hit
_derivativel_page_size_0_mean,and parbs_tarb_pi_non_pos
ted_blocked_cnt_mean dominate the prediction. These metrics
track requests matched on software endpoints, cache hits, and cy-
cles where the non-posted path is blocked, revealing that uneven
load with respect to data handling drives runtime variability.

Top 5 feature importances: Perlmutter (left) vs. Frontier (right)

0.6

Importance
o
>

0.2
0.0
G e\ X\ o X\ o O
X X X X X XN \
A ON e P 00T 080 e e 10 O
5207 AN e )a“; R (ea“esa%ef‘ﬁoc\@‘s;&é% e
. A xS
R Sl WO & N?f\ b ,&c\l“’ R o
O 28 oS <O el
o 0o o R0 B e S
9%~ \\3:’6/\(\\&/\) o ya¥ N
ECE e
2 os
?

Figure 3: Feature importances based on XGBoost models.

Forecasting Application Performance: Our model predicts ab-
solute performance reasonably well and almost perfectly captures
performance variation trends. When including NIC counters, MAPE
decreases significantly, especially for DeepCAM. Moreover, models
trained across multiple applications exhibited advantages over indi-
vidual application models, learning common performance variation
patterns more robustly.

We consider these findings to be a major highlight of our work.
We envision that system administrators and resource managers

Wei et al.

Actual vs Predicted Runtime (Perlmutter) MAPE (%) (lower is better)

© AMGGPT ° BB placement
s 8 '[‘:""CAM » EEN placementtgemm
= M MTL"’C" @ BB placement+gemm-+alireduce
g0 ° a B placement+gemm-alireduce +NIC
5 s
=]
& 250
o o
] &
5 200
3
< o
o 5o &
G I c
P “anf’o\f‘;ev("’s’\\"\‘ S “an"a\geev("’“"\\"\‘
el 150 200 250 300 350 400

Actual Runtime (s) Perlmutter Frontier

Figure 4: Analysis of XGBoost runtime predictions on Perl-
mutter and Frontier.

could use these predictions to schedule workloads more intelli-
gently or detect early signals of congestion. Our approach demon-
strates that even partial hardware counters and application-level
metrics can reveal critical bottlenecks in high performance com-
puting platforms.

References

[1] Claude Bernard, Tom Burch, Thomas A. DeGrand, Carleton DeTar, Steven Got-

tlieb, Urs M. Heller, James E. Hetrick, Kostas Orginos, Bob Sugar, and Doug

Toussaint. 2000. Scaling tests of the improved Kogut-Susskind quark action.

Physical Review D 61 (2000).

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD

’16). Association for Computing Machinery, New York, NY, USA, 785-794. doi:10.

1145/2939672.2939785

Hewlett Packard Enterprise. 2024.  HPE Cassini Performance Counters.

https://cpe.ext.hpe.com/docs/latest/getting_started/HPE- Cassini-Performance-

Counters.html Accessed: 2025-02-24.

R.D. Falgout, J.E. Jones, and U.M. Yang. 2006. The Design and Implementation

of hypre, a Library of Parallel High Performance Preconditioners. In Numerical

Solution of Partial Differential Equations on Parallel Computers, A.M. Bruaset and

A. Tveito (Eds.). Vol. 51. Springer-Verlag, 267-294.

[5] J.Kim, W.]. Dally, S. Scott, and D. Abts. 2008. Technology-Driven, Highly-Scalable
Dragonfly Topology. In 2008 International Symposium on Computer Architecture.
IEEE Computer Society.

[6] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr,
Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano
Fatica, Prabhat, and Michael Houston. 2018. Exascale Deep Learning for Climate
Analytics. arXiv:1810.01993 [cs.DC] https://arxiv.org/abs/1810.01993

[7] Ruipeng Li and Ulrike M. Yang. 2023. AMG2023. [Computer Software] https:
//doi.org/10.11578/dc.20230413.1. doi:10.11578/dc.20230413.1

[8] Meta. [n.d.]. PyTorch Profiler. https://pytorch.org/tutorials/recipes/recipes/
profiler_recipe html.

[9] Daniel Nichols, Alexander Movsesyan, Jae-Seung Yeom, Daniel Milroy, Tapasya

Patki, Abhik Sarkar, and Abhinav Bhatele. 2024. Predicting Cross-Architecture

Performance of Parallel Programs. In Proceedings of the IEEE International Parallel

& Distributed Processing Symposium (IPDPS °24). IEEE Computer Society.

NVIDIA. [n.d.]. NCCL. https://docs.nvidia.com/deeplearning/nccl/user-guide/

docs/overview.html.

Siddharth Singh, Prajwal Singhania, Aditya Ranjan, John Kirchenbauer, Jonas

Geiping, Yuxin Wen, Neel Jain, Abhimanyu Hans, Manli Shu, Aditya Tomar, Tom

Goldstein, and Abhinav Bhatele. 2024. Democratizing Al: Open-source Scalable

LLM Training on GPU-based Supercomputers. In Proceedings of the ACM/IEEE

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC "24).

AMD ROCm Software. [n.d.]. RCCL.

Jeffrey Vetter and Chris Chambreau. 2005. mpip: Lightweight, scalable mpi

profiling. (2005).

—
s

3

[4

[10

[11

=
L


https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://cpe.ext.hpe.com/docs/latest/getting_started/HPE-Cassini-Performance-Counters.html
https://cpe.ext.hpe.com/docs/latest/getting_started/HPE-Cassini-Performance-Counters.html
https://arxiv.org/abs/1810.01993
https://arxiv.org/abs/1810.01993
https://doi.org/10.11578/dc.20230413.1
https://doi.org/10.11578/dc.20230413.1
https://doi.org/10.11578/dc.20230413.1
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html

	Abstract
	1 Methodology
	2 Analysis of the Data
	2.1 Impact of Slow GPUs on Variability
	2.2 Allocation Spread across Dragonfly Groups
	2.3 Impact of Concurrently Running Jobs

	3 ML-based Performance Forecasting
	References

