nmasking Performance Variability in GPU Codes on

Production Supercomputers

Cunyang Wei, Keshav Pradeep, Abhinav Bhatele
Department of Computer Science, University of Maryland

Relative performance of different applications (Perimutter) Relative performance of different applications (Frontier)

g 1 o Bl
g . 2 . : o AMG2023 ¢ DeepCAM
g 1 € 30/ O MILC A nanoGPT '
g g” "%
d‘.’ |.2 I:DD - A d‘_’ oo 0 Y ")
2 L Dngncpﬂﬂgﬂuﬂbo o® %20 - g O 0 0 o ¢ ogo 0 0 0
© m &8 O A © Vo m OD£ ﬂ B o 2 00 .\ 4R 0
A AApMmA Apoo A o O 0o O mooo A 0G0
&, I .0 - . . E IE "y a . A qo% AR WO, | &, I .0 1= - . \f' Bl [BP m 4 /M 3 A A A ABAM V. 0 ; Yy oy yore Yy 400\ A\
Dec 23 Jan 02 Jan 12 Feb || Feb 21 Apr 12 Dec 23 Jan 02 Jan 12 Jan 22 Feb Ol Feb |1 Feb 21 Mar 03 Mar |3 Mar 23 Apr 0 Apr 12

Abstract

ML based Analysis and Performance Prediction

Modern HPC facilities increasingly rely on GPU-accelerated clusters to drive both scientific computing and Al
workloads. Performance variability is a critical issue in these systems, undermining efficiency and
reproducibility. While prior studies have extensively analyzed variability in CPU-centric supercomputers, large-
scale investigations on GPU clusters are lacking. To address this gap, we set up a longitudinal experiment on
Perlmutter and Frontier. We benchmark representative HPC and Al applications and collect detailed
performance data to assess the impact of compute variability, allocated node topology, and network
conditions on overall runtime. We also use a ML based approach to identify potential correlations between
these factors and to forecast the execution time. Our analysis identifies network performance as the dominant

e Methodology: We train an XGBoost model to predict runtime. We use 90% of our runs for training data,
reserving 10% of testing.
o Summary of performance dataset features [name (feature count per run)]: Application Name (1),
Placement (1), GEMM (3), MPI Allreduce (11), NCCL Allreduce (8), NIC Counters (29*3)

e Evaluation: We use Mean Absolute Percentage Error (MAPE)

source of runtime variability. 400 30
o AMG o PR placement
What is Performance Variability? 350/ A& nanoGPT . 25{ EEEN placement+gemm
LD ¢ DeepCAM p. % B placement+gemm-+allreduce
e Performance Variability: fluctuations in application runtime across repeated executions under seemingly w o MILC A ~~20{ EEM placement+gemm-+alireduce+NIC
identical inputs, environments, and system conditions g 3007 » 8\./
- LLI
e Sources of variability: HW defects, network contention, job placement, OS jitter Z 250 _ %
e Prior studies focused on CPU-based systems, leaving the impact of new communication patterns on b &0 - 2
variability in GPU-based supercomputers unexplored. 0 200- -
o
0
Methodology for Measuring Variability A ., 8’
e We measure variability for two HPC apps (AMG and MILC) and two Al apps (DeepCAM and nanoGPT) 00
e We collect the following features to analyze performance variability: mpiP for profiling HPC apps, the 100 150 200 250 300 350 400
Actual Runtime (s) Perlmutter Frontier

PyTorch profiler for Al workloads, SLURM'’s sacct logs, Cassini NIC hardware counters, and performance
data from GEMM and All-Reduce microbenchmarks. o Left: Actual vs predicted runtime using placement, GEMM, Allreduce, and NIC counters features

e Platforms used: NERSC Perlmutter OLCF Frontier (Perlmutter & Frontier) | . o |
e Right: When NIC counter features are included in input, MAPE decreases significantly, especially for apps
GPU model NVIDIA A100 GPU AMD MI250X GPU with more variation (e.g. DeepCAM on Frontier). This highlights the importance of NIC counters for
Interconnect HPE Slingshot-11 HPE Slingshot-11 ~ explaining variability |
GPUs/GCDs per node |4 8
Analysis of the Data Perimutter Frontier
0.6 -
cu Relative to best time per GPU (Perlmutter) m Relative to best time for system (Perlmutter) 9
O 1.30 2 130 T—— c
£ 1.25- Q... AlQ0 40GE £ 1.25- ° £ 0.4-
o) o) O
2 |2 O Al00 80GB 2 120- o
P & £
> L1517 s 1.15- 0.2 1
> 0o o o o >
Lt 1,10 A w |10 -
O O _
2 1.05- o o . © .05 - 0.0
& : - QN W\ AN
£ |00, Suminineteeeeabionmed s, | S0 o Lo W e o
o O 1000 2000 3000 4000 5000 6000 7000 o O 1000 2000 3000 4000 5000 6000 7000 \}5@6# %\\(3 S o~ 9
Global GPU Index Global GPU Index g S 55
(\\,—* D -\]6 -
Observation: While single-GPU performance remains relatively stable over time (especially on Perlmutter), v 5;\6{\4%";“
there is notable variability across different GPUs. \Q®~ '\ qj\,—“

e Feature importances based on XGBoost models. Left: On PerImutter, most important feature is

o 1.8 _ o Q 4.0 hni_rx_paused_0 _mean (num cycles where recv path is paused, suggesting network pushing data
= d B MILC = DeepCAM quicker than NIC can read) Right: On Frontier, most important feature is
S 1.6 H O c .
£ ODp OpoB9 A c 3.01¢ ¢ lpe_net_match_request 0 _mean (num requests matched on software endpoints)
T 14 ¢ 0
o - o _ 0O -~ a o 0 0 0 .
o |3 EgE-C O o 2.0- 6 0 0000 Conclusions
«
RN oggo0 ﬁ 10- g oﬁbm 00@%0 0x o Q‘ e Network conditions - not GPU variability or job placement - are the primary drivers of runtime
1.0 s wsa . = ’ 3 8 16 24 32 40 48 56 64 variability in large-scale GPU workloads.
¢ 2 & &6 5 (B 12 14 6 . L. e A small subset of users running communication-heavy jobs account for most of the observed
Number of slow GPUs Number of distinct dragonfly groups .
performance degradation.
o Left: Slow GPU =# of GPUs in job allocation which fall in slowest 1% of system's GPUs. Observation: The e Our ML model accurately predicts runtime variability, even with limited training data per application.
quantity of “slow” GPUs has no impact on performance. Right: On both systems, job allocations across
more Dragonfly groups does not degrade app performance, despite incurring more network hops. Recommendations for Future Efforts
e “Top User” jobs should run on isolated nodes to prevent their communication patterns from
35 35 impacting network performance for others.
: @ b
§ 304 AMG2023 O o 9 | 30 O O e Future designs need not over-engineer the topology for increased network hops. The dragonfly
g 75 (o g 25 - o topology is very robust, essentially neutralizing the incurred penalties from nodes allocations being
5 o _ spread out.
+ 1.201 S .20
O | |5- D |5 e The application of ML-models (like XGBoost) for system-wide monitoring can predict runtime
i 8 O o iy foo Y
Q 1.10- 0 1.10- variability with high accuracy using features like NIC and network counters. System administrators can
p= l p= | use these predictions to detect early signs of congestion and allow users to delay or cancel their
% 05 % 05 ¥
e |.004 © e |.00- Q workloads.
' . ' k ') ' L ' : : : ' : : : ; : This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
2250 2500 2750 3000 3250 3500 3750 4000 4250 0 250 500 750 I 000 l 250 I 500 I 750 2000 supported by the Office of Science of the U.gS. Departmef\t of Eflergygunder éontract No. DE%ACOS-OOOR22725. Thyis research used
Number of total allocated concurrent nodes Number of concurrent nodes of top users Ackn()wledgements resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User
Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award
m2404 for 2023.

e Top Users: Users whose allocated number of nodes correlates with our application‘s performance variation
[1]J. Kim,W. J. Dally, S. Scott, and D. Abts. 2008. Technology-Driven, Highly-Scalable Dragonfly Topology. In 2008 International Symposium on
and who concurrently request more than 32 nodes. Computer Architecture
[2] Tianqgi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD’16).
[3] Daniel Nichols, Alexander Movsesyan, Jae-Seung Yeom, Daniel Milroy, Tapasya Patki, Abhik Sarkar, and Abhinav Bhatele. 2024. Predicting Cross-

Architecture Performance of Parallel Programs. In Proceedings of the IEEE International Parallel & Distributed Processing Symposium (IPDPS ’'24).

e Observation: Overall system utilization alone does not explain the observed performance degradation; a References

few specific neighbors with high communication intensity cause most of the performance variability.

	Slide 1

