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Abstract

ML based Analysis and Performance Prediction

Modern HPC facilities increasingly rely on GPU-accelerated clusters to drive both scientific computing and Al
workloads. Performance variability is a critical issue in these systems, undermining efficiency and
reproducibility. While prior studies have extensively analyzed variability in CPU-centric supercomputers, large-
scale investigations on GPU clusters are lacking. To address this gap, we set up a longitudinal experiment on
Perlmutter and Frontier. We benchmark representative HPC and Al applications and collect detailed
performance data to assess the impact of compute variability, allocated node topology, and network
conditions on overall runtime. We also use a ML based approach to identify potential correlations between
these factors and to forecast the execution time. Our analysis identifies network performance as the dominant

e Methodology: We train an XGBoost model to predict runtime. We use 90% of our runs for training data,
reserving 10% of testing.
o Summary of performance dataset features [name (feature count per run)]: Application Name (1),
Placement (1), GEMM (3), MPI Allreduce (11), NCCL Allreduce (8), NIC Counters (29*3)

e Evaluation: We use Mean Absolute Percentage Error (MAPE)
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e Sources of variability: HW defects, network contention, job placement, OS jitter Z 250 _ %
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Methodology for Measuring Variability A ., 8’
e We measure variability for two HPC apps (AMG and MILC) and two Al apps (DeepCAM and nanoGPT) 00
e We collect the following features to analyze performance variability: mpiP for profiling HPC apps, the 100 150 200 250 300 350 400
Actual Runtime (s) Perlmutter Frontier

PyTorch profiler for Al workloads, SLURM'’s sacct logs, Cassini NIC hardware counters, and performance
data from GEMM and All-Reduce microbenchmarks. o Left: Actual vs predicted runtime using placement, GEMM, Allreduce, and NIC counters features

e Platforms used: NERSC Perlmutter OLCF Frontier (Perlmutter & Frontier) | . o |
e Right: When NIC counter features are included in input, MAPE decreases significantly, especially for apps
GPU model NVIDIA A100 GPU AMD MI250X GPU with more variation (e.g. DeepCAM on Frontier). This highlights the importance of NIC counters for
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Observation: While single-GPU performance remains relatively stable over time (especially on Perlmutter), v 5;\6{\4%";“
there is notable variability across different GPUs. \Q®~ '\ qj\,—“

e Feature importances based on XGBoost models. Left: On PerImutter, most important feature is
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performance degradation.
o Left: Slow GPU =# of GPUs in job allocation which fall in slowest 1% of system's GPUs. Observation: The e Our ML model accurately predicts runtime variability, even with limited training data per application.
quantity of “slow” GPUs has no impact on performance. Right: On both systems, job allocations across
more Dragonfly groups does not degrade app performance, despite incurring more network hops. Recommendations for Future Efforts
e “Top User” jobs should run on isolated nodes to prevent their communication patterns from
35 35 impacting network performance for others.
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e Top Users: Users whose allocated number of nodes correlates with our application‘s performance variation
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e Observation: Overall system utilization alone does not explain the observed performance degradation; a References

few specific neighbors with high communication intensity cause most of the performance variability.
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