
Optimizing Collectives with Large Payloads on GPU-based
Supercomputers

Siddharth Singh
sidsingh@nvidia.com

NVIDIA, Inc.
Santa Clara, California, USA

Mahua Singh
s.mahua@iitg.ac.in

Dept. of Computer Science and Engg.
Indian Institute of Technology

Guwahati, India

Keshav Pradeep
keshprad@umd.edu

Department of Computer Science
University of Maryland

College Park, Maryland, USA

Abhinav Bhatele
bhatele@cs.umd.edu

Department of Computer Science
University of Maryland

College Park, Maryland, USA

Abstract
We evaluate the current state of collective communication on GPU-
based supercomputers for large language model (LLM) training
at scale. Existing libraries such as RCCL and Cray-MPICH exhibit
critical limitations on systems such as Frontier – Cray-MPICH un-
derutilizes network and compute resources, while RCCL suffers
from severe scalability issues. To address these challenges, we in-
troduce PCCL, a communication library with highly optimized
implementations of all-gather and reduce-scatter operations tai-
lored for distributed deep learning workloads. PCCL is designed to
maximally utilize all available network and compute resources and
to scale efficiently to thousands of GPUs. It achieves substantial
performance improvements, delivering 6–33× speedups over RCCL
and 28–70× over Cray-MPICH for all-gather on 2048 GCDs of Fron-
tier. These gains translate directly to end-to-end performance: in
large-scale GPT-3-style training, PCCL provides up to 60% and 40%
speedups over RCCL for 7B and 13B parameter models, respectively.

1 Collective Communication in Parallel Deep
Learning

While several categories of parallelism exist in deep learning (tensor
parallelism [5], pipeline parallelism [2], expert parallelism [3]), this
work focus on sharded data parallelism, a widely used approach for
large scale training [4, 9]. Two critical collective communication
operations – all-gather and reduce-scatter – play a central role in
sharded data parallelism. These operations aggregate distributed
data across GPUs. In Figure 1, we plot the all-gather and reduce-
scatter message sizes for three frameworks that support sharded
data parallelism – FSDP [9], Deepspeed ZeRO-3 [4], and AxoNN [6].
Notice how the message sizes across these three frameworks are
in the tens to hundreds of megabytes, even becoming more than a
gigabyte for larger models.

2 Observed Cray-MPICH and RCCL issues on
Frontier

Through benchmarking experiments, we observed the following
issues:

5B 10B 20B 40B 80B 160B 320B 640B
Model size (Number of parameters in billions)

16

32

64

128

256

512

1024

2048

4096

8192

Bu
ffe

r
si

ze
s

(M
B)

Buffer sizes of collectives in parallel deep learning

AxoNN
ZeRO-3
FSDP

Figure 1: All-gather and reduce-scatter message sizes for
various deep learning frameworks and transformer model

sizes.

• Cray MPICH routes all network traffic through a single
NIC, resulting in severe underutilization of the available
network bandwidth.

• Cray MPICH’s CPU-based reduction operations in reduce-
scatter introduce significant overhead, which in combina-
tion with the NIC underutilization issue, results in a 10-15x
performance gap compared to RCCL.

• Both Cray MPICH and RCCL rely solely on the ring algo-
rithm for all-gather and reduce-scatter, leading to poor scal-
ing in latency-bound scenarios as shown in Figure 3.

. .
 .

GPU 0

GPU 1

GPU 0

GPU 1

Step 1: Inter-node all-gather

Node 0 Node 1

. . . .

GPU 0

GPU 1

Node N-1

. . . .

GPU
M-1

. . . .

. . . .

GPU
M-1

GPU
M-1

GPU 0

GPU 1

GPU 0

GPU 1

Step 3: Device-local shuffle

Node 0 Node 1

. . . .

GPU 0

GPU 1

Node N-1

GPU
M-1

GPU
M-1

GPU
M-1

...

...

...

...

...

Step 2: Intra-node all-gather

...

...

...

. .
 .

. .
 .

. . . .

GPU 0

GPU 1

GPU 0

GPU 1

Node 0 Node 1

GPU 0

GPU 1

Node N-1

. . . .

GPU
M-1

. . . .

. . . .

GPU
M-1

GPU
M-1

...

...

...... ...

...

...

...

...

...

...

...

...

...

Figure 2: Diagram showing our hierarchical (two-level)
implementation to dissolve an all-gather operation on a
GPU-based cluster with N nodes and M GPUs per node.

Singh et al.

3 Optimizing All-gathers and Reduce-scatters
Our optimized implementations of all-gather and reduce-scatter
follow a two-level hierarchical design to mitigate the NIC underuti-
lization issue.

The hierarchical communication proceeds in three steps de-
tailed in Figure 2. Step 1 (inter-node all-gather): all inter-node
sub-communicators perform all-gather concurrently, so each GPU
receives data from its peers on all other nodes. Step 2 (intra-node
all-gather): within each node, GPUs exchange data to assemble the
complete result, though in an incorrect order. Step 3 (device-local
shuffle): each GPU locally rearranges its data using a transpose
kernel to obtain the correctly ordered output. Reduce-scatter is im-
plemented similarly, but begins with the intra-node phase followed
by the inter-node phase.

An important aspect of our design is that it schedules all of the
all-gather operations in Step 1 of Figure 2 concurrently on all of
the inter-node sub-communicators. We leverage this fact to utilize
all NICs on a node concurrently. A Frontier node has four NICs,
each connected to two GCDs. In our implementation, we ensure
that each GCD exclusively sends and receives traffic to and from
its corresponding NIC (e.g. - GCDs 0 and 1 to NIC 0, GCDs 2 and 3
to NIC 1, and so on), thus ensuring uniform traffic across NICs.

3.1 Choice of Communication Libraries for
Each Level of the Hierarchy

We chose RCCL for intra-node communication since it is highly
optimized for GPU-to-GPU intra-node communication, leveraging
shared memory, PCIe, and Infinity fabric. For inter-node commu-
nication, Cray-MPICH is chosen primarily for reliability, as RCCL
has been reported to be unstable and prone to crashing at scale.

3.2 Choice of Algorithms for Inter-Node
Communication

Our choice of communication algorithms for each level of the hier-
archy is driven by performance considerations and the limitations
of available libraries.

Since RCCL only supports the ring algorithm for intra-node
collectives, we adopt this as our intra-node communication strategy.
Fortunately, ring is well-suited for this context, as the small number
of GCDs within a node (eight) ensures that ring can effectively
saturate the available bandwidth.

With thousands of GPUs participating in the collective, latency
concerns become critical in the inter-node phase. Cray-MPICH
(used for inter-node communication) offers only the ring algorithm
by default. However, ring algorithms’s linear scaling in latency with
respect to processes count makes it suboptimal at large-scale.

To address this, we implement alternative algorithms with im-
proved scaling properties. Specifically, we utilize recursive doubling
for all-gather and recursive halving for reduce-scatter [7]. These
algorithms offer logarithmic latency terms enabling significantly
better performance as the number of GPUs increases.

4 Experimental Setup
We conduct our experiments on the Frontier supercomputer at Oak
Ridge National Laboratory.

We benchmark PCCL on a range of message sizes from 16MB
to 1GB. For reduce-scatter, this range represents the size of the
input buffer on each GPU, while for all-gather, it corresponds to
the size of the output buffer on each GPU. For each message size,
we measure performance across 32 to 2048 GCDs (4 to 256 nodes)
on Frontier. We use HIP and CUDA event timers to measure the
runtime of collective operations.

32 64 128 256 512 1024 2048
Number of processes (GCDs)

101

102

103

Ex
ec

ut
io

n
tim

e
(m

s)

Comparison of all-gather performance (Frontier)

Cray-MPICH (512 MB)
Cray-MPICH (256 MB)
RCCL (512 MB)

RCCL (256 MB)
PCCL (512 MB)
PCCL (256 MB)

Figure 3: Performance comparison of all-gather using Cray
MPICH, RCCL, and PCCL, for different per-process output
buffer sizes (ideal scaling behavior is flat horizontal line)

To evaluate the practical benefits of PCCL, we measure the
end-to-end training performance of large language models using
DeepSpeed ZeRO-3 [4], a widely adopted parallel deep learning
framework. We perform strong scaling experiments on 7B and 13B
parameter GPT-style transformer models [1] using model hyperpa-
rameters from Zhang et al. [8].

Strong scaling experiments are performed between 128 and 2048
GCDs. We run 10 training batches across three trials and com-
pute the average throughput over the last 8 batches in each run to
minimize warm-up effects.

5 Results
Figure 3 shows the performance of all-gather operations on Frontier
using PCCL and other communication libraries. We evaluate two
sets of output buffer sizes: 64 and 128 MB (top plot), and 256 and
512 MB (bottom plot). For each configuration, we scale the number
of GCDs from 32 to 2048. Since the output buffer size per GPU
remains fixed, the ideal performance curve for each buffer size is a
flat horizontal line, indicating perfect scaling.

While RCCL andMPICH fall short of this ideal, PCCL’s all-gather
performance maintains nearly flat scaling trends across message
sizes and GCD counts. We observe similar trends for reduce-scatter.

Figure 4 shows the speedups of PCCL over RCCL for all-gather
operation on Frontier across a range of output buffer sizes and
process counts. PCCL delivers substantial gains in latency-bound
scenarios, achieving speedups of 30x over RCCL’s all-gather for 16-
64MB message sizes at 2048 GCDs. In bandwidth bound scenarios,
PCCL underperforms RCCL, delivering speedups around 0.52x over
RCCL for 1024 MB buffer at 32 GCDs. We observe similar results
for reduce-scatter.

Figure 5 presents the batch times for strong scaling GPT-3-style
transformer training on Frontier using the DeepSpeed ZeRO-3

Optimizing Collectives with Large Payloads on GPU-based Supercomputers

32 64 128 256 512 1024 2048
Number of processes (GCDs)

16

32

64

128

256

512

1024

O
ut

pu
t

bu
ffe

r
si

ze
 (

M
B)

2.1 3.3 5.3 16.6 23.1 29.1 33.3

1.4 2.4 4.3 17.0 21.3 27.8 32.4

0.85 1.5 2.6 11.9 20.8 26.0 31.2

0.58 0.84 1.5 6.6 12.1 23.0 19.6

0.58 0.55 0.8 3.5 7.0 11.7 24.3

0.57 0.54 0.53 2.0 3.6 7.0 11.4

0.56 0.54 0.52 1.1 2.0 3.6 7.0

Speedup of PCCL over RCCL for all-gather (Frontier)

0.5

0.75

1

2

4

8

16

Figure 4: Speedups from using PCCL over RCCL for
all-gather.

framework [4]. For end-to-end DeepSpeed ZeRO-3 training on
Frontier, PCCL and RCCL perform similarly at smaller scales (128-
256 GCDs). At larger scales, PCCL shows significant improvements
in batch time compared to RCCL. At 2048 GCDs, PCCL reduces
batch time by 72% (7B model) and 79% (13B model).

128 256 512 1024 2048
Number of processes (GCDs)

4

6

8
10

15

20

30

40
50
60

T
im

e
pe

r
ba

tc
h

(s
)

Strong scaling performance of DeepSpeed-ZeRO-3 (Frontier)

RCCL (13B)
RCCL (7B)

PCCL (13B)
PCCL (7B)

Figure 5: Strong scaling performance of Deepspeed ZeRO-3
using RCCL and PCCL, on Frontier for two model sizes:

GPT-3 7B and GPT-3 13B.

6 Conclusion
In this work, we developed PCCL, a new communication library
with highly optimized implementations of all-gather and reduce-
scatter operations. PCCL leverages several optimizations designed
to alleviate the performance bottlenecks of Cray-MPICH, RCCL
and NCCL, highlighted in this work. PCCL achieves substantial
performance improvements, delivering 6–33× speedups over RCCL
and 28–70× over Cray-MPICH for all-gather on 2048 GCDs of
Frontier. These gains translate directly to end-to-end performance:
in large-scale GPT-3-style training, PCCL provides up to 60% and
40% speedups over RCCL for 7B and 13B parameter models on
Frontier, respectively.

Acknowledgments
This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

References
[1] Tom B. Brown et al. 2020. Language Models are Few-Shot Learners. CoRR

abs/2005.14165 (2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165
[2] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. In Advances in Neural Information Processing Systems, Vol. 32. Curran
Associates, Inc.

[3] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Am-
inabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed-MoE:
Advancing Mixture-of-Experts Inference and Training to Power Next-Generation
AI Scale. doi:10.48550/ARXIV.2201.05596

[4] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory Optimizations toward Training Trillion Parameter Models. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 20, 16 pages.

[5] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. Technical Report. arXiv:1909.08053 [cs.CL]

[6] Siddharth Singh, Prajwal Singhania, Aditya Ranjan, John Kirchenbauer, Jonas
Geiping, Yuxin Wen, Neel Jain, Abhimanyu Hans, Manli Shu, Aditya Tomar, Tom
Goldstein, and Abhinav Bhatele. 2024. Democratizing AI: Open-source Scalable
LLM Training on GPU-based Supercomputers. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’24).

[7] Rajeev Thakur and William D. Gropp. 2003. Improving the Performance of
Collective Operations in MPICH. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Jack Dongarra, Domenico Laforenza, and Salvatore
Orlando (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 257–267.

[8] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

[9] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,
Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can
Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit
Mathews, and Shen Li. 2023. PyTorch FSDP: Experiences on Scaling Fully Sharded
Data Parallel. Proc. VLDB Endow. 16, 12 (aug 2023), 3848–3860. doi:10.14778/
3611540.3611569

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2201.05596
https://arxiv.org/abs/1909.08053
https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569

	Abstract
	1 Collective Communication in Parallel Deep Learning
	2 Observed Cray-MPICH and RCCL issues on Frontier
	3 Optimizing All-gathers and Reduce-scatters
	3.1 Choice of Communication Libraries for Each Level of the Hierarchy
	3.2 Choice of Algorithms for Inter-Node Communication

	4 Experimental Setup
	5 Results
	6 Conclusion
	Acknowledgments
	References

